推广 热搜: 沉船打捞  护舷  橡胶护舷  气囊下水  打捞  气囊打压  船舶上排  气囊  充气橡胶护舷  船舶下水 

2280X2000X200防冲板强度计算

   2011-05-04 100
核心提示:1.Calculation Conditions ( 计算条件)Contact angle(接触角度): 10o Fender type(护舷类型) Frame Size(防冲板尺寸 宽 x 长 x 厚) : 2000B x 2380L x 200H2.Calculation of Sectional Force (局部力的计算方式)Among sectional forces, Bend Moment M becomes maximum just b

1. Calculation Conditions ( 计算条件)
Contact angle(接触角度): 10o  
Fender type(护舷类型)
Frame Size(防冲板尺寸  宽 x 长 x 厚) :  2000B  x 2380L x 200H

2. Calculation of Sectional Force (局部力的计算方式)
Among sectional forces, Bend Moment M becomes maximum just before a vessel contact to the board (M max). Thus M max and S max ( maximum sectional force) under M max could be calculated shown below
(在局部力之中,就在船只接触护板同时弯曲矩 M 变成最大 (M最大)。因此在M最大 下的M最大 和 S最大 (最大局部力)应按以下方式计算
2.1 Maximum Bend Moment ( M max)  最大弯曲矩 (M最大)
Provided a vessel contacts a board at angle of 10 degrees horizontally, the board is considered to be a beam regarding a rubber parts as a spring and a chain attachment position as a fulcrum. Thus, bend moment could be calculated. (假设船只以10度角接触护板,而护板可认作是一个横梁, 橡胶部分认作是弹簧,链条部分的位置作为支点,则弯曲矩可如下计算)


        Picture 1.  Calculation Model for Bend Moment
        (图1:弯曲矩的计算模型)

Max bend moment (M max) could be calculated by the following process because it generates just before a vessel contact the board.
因为只有当船只接触护板时才可产生最大弯曲矩 (M最大),所以它可以按下列程序计算

Compression amount of rubberδ= L2 ·tan 0
      (橡胶的压缩量)           = 1050 · tan (10o)
                                 = 185mm (23% of total height)总高的23%

 Then load F of rubber can be got by reaction force of compression performance graph. (橡胶的加载F可从压缩性能曲线图中的反力中获取)

That is, Load F = 610kN (就是说橡胶的加载F = 754kN)
Accordingly, by putting L = (415+1050) = 1465mm  L1 = 415mm;  L2= 1050mm
据此, L =  (415+1050) = 1465mm  L1 = 415mm;  L2= 1050mm

M max = 610 x 1000 x 1050x 415/1465= 1.776 x 108N·mm
  2.2 Maximum Shearing Power ( S max) (最大剪切力)

     It generates in a chain attachment position, and the power becomes equal to the load which acts on a chain exactly. That is, Smax = 305kN
     (它产生于链条附件位置,该剪切力等同于作用于链条上的加载)


3. Stress Examination (应力测定)
3.1 Cross-sectional form for M max is as follows: (M最大 的横截面形式如下:)
At first, the cross-sectional second moment of this section and the cross-sectional coefficient Z are calculated.
(首先计算本部分的横截面的第二力矩和横截面系数Z)
Cross-sectional second moment I = 2.425 x 108
(横截面的第二力矩)
Cross-sectional coefficient Z = 2.46 x 106
(横截面系数Z)
      Thus, bending stress σ= M max/Z = 2.425 x 108/2.46 x 106
      (因此弯曲应力) = 98.6N/mm2 < SS400 acceptable stressσa = 140N/mm2
      Therefore, it can be said enough safe. (因此可以说是足够的安全)


                Picture 2. Cross-sectional form of the perpendicular direction
                 (图2:垂直方向的横截面形式)
  
3.2 Cross-sectional stressЧ for S max can be considered to be taken by wave and calculated as follows: (针对S最大横截面应力可认为从波状运动中获取并计算如下)

Cross-sectional stress Ч = S max/Aw
横截面应力
Aw: cross section area of wave ( = 10800mm2)
(Aw:波状运动的横截面区域
      Ч = 310 x 1000/10800
         = 28.7N·mm2 < SS 400 acceptable stressσa = 80N/mm2
   
  Therefore, it can be said enough safe.
  (因此可以说是足够的安全)

 
反对 0举报 0 收藏 0 打赏 0评论 0
 
更多>同类学知识
推荐图文
推荐学知识
点击排行
网站首页  |  版权隐私  |  使用协议  |  联系方式  |  关于我们  |  网站地图  |  排名推广  |  广告服务  |  积分换礼  |  网站留言  |  RSS订阅  |  违规举报
Powered By DESTOON